home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
The Very Best of Atari Inside
/
The Very Best of Atari Inside 1.iso
/
mint
/
mint110s
/
memprot.c
< prev
next >
Wrap
C/C++ Source or Header
|
1993-09-14
|
33KB
|
1,189 lines
/*
* Copyright 1991,1992,1993 Atari Corporation.
* All rights reserved.
*/
/*
* page-table data structures
*
*
* The root pointer points to a list of pointers to top-level pointer tables.
*
* Each entry in a pointer table points to another pointer table or to
* a page table, or is a page descriptor.
*
* Since, initially, the logical address space is the physical address space,
* we only need to worry about 26MB plus 32K for I/O space.
*
* Since we want some pages to be supervisor-accessible, but we don't want
* a whole separate table for that, we use long-format descriptors.
*
* Initial memory map:
*
* 0 - membot: S (supervisor only)
* membot - memtop: P (protected TPA)
* memtop - phystop: G (screen)
* phystop - $00E00000: bus error
* $00E00000- $00E3FFFF: G (ROM)
* $00E40000- $00FF7FFF: bus error
* $00FF8000- $00FFFFFF: G (mostly S: I/O space, but that's done in hardware)
* $01000000- ramtop: P
* ramtop - $7FFFFFFF: G (A32/D32 VME, cacheable)
* $80000000- $FEFFFFFF: G (A32/D32 VME, non cacheable)
* $FFxxxxxx just like $00xxxxxx.
*
* Here's a final choice of layouts: IS=0, PS=13 (8K), TIA=4, TIB=4, TIC=4,
* TID=7. This lets us map out entire unused megabytes at level C, and gives
* us an 8K page size, which is the largest the '040 can deal with.
*
* This code implements 4+4+4+7, as follows:
*
* tbl_a
* 0 -> tbl_b0
* 1-7 -> Cacheable direct (VME) page descriptors
* 8-E -> Non-cacheable direct (VME) page descriptors
* F -> tbl_bf
*
* tbl_b0 table: 16 entries (assumes only 16MB of TT RAM)
* 0 -> tbl_c00 (16MB of ST RAM address space)
* 1 -> tbl_c01 (16MB of TT RAM address space)
* 2-F -> cacheable direct (VME) page descriptors
*
* tbl_bF table: 16 entries (deals with $FF mapping to $00)
* 0-E -> Non-cacheable direct (VME) page descriptors
* F -> tbl_c00 (16MB of ST RAM address space, repeated here as $FF)
*
* tbl_c00 table: ST RAM address space (example assuming 4MB ST RAM)
* 0-3 -> RAM page tables
* 4-D -> invalid
* E -> direct map, cache enable (ROM)
* F -> direct map, cache inhibit (I/O)
*
* For each 16MB containing any TT RAM, there's a tbl_c. Within those,
* for each MB that actually has TT RAM, there's another table, containing
* 128 RAM page tables. Where there isn't RAM, there are "global"
* pages, to let the hardware bus error or not as it sees fit.
*
* One RAM page table is allocated per megabyte of real RAM; each table has
* 128 entries, which is 8K per page. For a TT with 4MB ST RAM and 4MB TT RAM
* that's 8K in page tables. You can cut this down by not allocating page
* tables for which the entire megabyte is not accessible (i.e. it's all
* private memory and it's not YOUR private memory).
*
* You have one of these per process. When somebody loads into G or S memory
* or leaves it, you have to go through the page tables of every process
* updating S bits (for S) and DT (for G) bits.
*
* The top levels are small & easy so replicating them once per process
* doesn't really hurt us.
*
*/
#include "mint.h"
#if 0
#define MP_DEBUG(x) DEBUG(x)
#else
#define MP_DEBUG(x)
#endif
void *memset P_((void *s, int ucharfill, unsigned long size));
static void _dump_tree P_((long_desc tbl, int level));
extern int debug_level; /* see debug.c */
extern long mcpu; /* in main.c */
/*
* You can turn this whole module off, and the stuff in context.s,
* by setting no_mem_prot to 1.
*/
int no_mem_prot;
long page_table_size;
/*
* PMMU stuff
*/
/*
* This is one global TC register that is copied into every process'
* context, even though it never changes. It's also used by the
* functions that dump page tables.
*/
tc_reg tc;
/* mint_top_* get used in mem.c also */
ulong mint_top_tt;
ulong mint_top_st;
int tt_mbytes; /* number of megabytds of TT RAM */
/*
* global_mode_table: one byte per page in the system. Initially all pages
* are set to "global" but then the TPA pages are set to "invalid" in
* init_mem. This has to be allocated and initialized in init_tables,
* when you know how much memory there is. You need a byte per page,
* from zero to the end of TT RAM, including the space between STRAM
* and TTRAM. That is, you need 16MB/pagesize plus (tt_mbytes/pagesize)
* bytes here.
*/
unsigned char *global_mode_table;
/*
* prototype descriptors; field u1 must be all ones, other u? are zero.
* This is just the first long of a full descriptor; the ".page_type" part
* of the union. These are initialized by init_tables.
*
* The proto_page_type table yields the value to stuff into the page_type
* field of a new process' page table. It is the "non-owner" mode for
* a page with the corresponding value in global_mode_table.
*/
page_type g_page;
page_type g_ci_page;
page_type s_page;
page_type readable_page;
page_type invalid_page;
page_type page_ptr;
page_type *const proto_page_type[] =
{ &invalid_page, &g_page, &s_page, &readable_page, &invalid_page };
/* private global super private/read invalid */
/*
* Init_tables: called sometime in initialization. We set up some
* constants here, but that's all. The first new_proc call will set up the
* page table for the root process and switch it in; from then on, we're
* always under some process' control.
*
* The master page-mode table is initialized here, and some constants like
* the size needed for future page tables.
*
* One important constant initialized here is page_table_size, which is
* the amount of memory required per page table. new_proc allocates
* this much memory for each process' page table. This number will be
* 1K/megabyte plus page table overhead. There are TBL_PAGES_OFFS
* tables at TBL_SIZE_BYTES each before the main tables begin; then
* there is 1024 bytes per megabyte of memory being mapped.
*/
void
init_tables()
{
int n_megabytes;
long global_mode_table_size;
if (no_mem_prot) return;
TRACE(("init_tables"));
#define phys_top_tt (*(ulong *)0x5a4L)
if (phys_top_tt == 0x01000000L) mint_top_tt = 0;
else mint_top_tt = phys_top_tt;
#define phys_top_st (*(ulong *)0x42eL)
mint_top_st = phys_top_st;
if (mint_top_tt)
tt_mbytes = (int) ((mint_top_tt - 0x01000000L) / ONE_MEG);
else
tt_mbytes = 0;
n_megabytes = (int) ((mint_top_st / ONE_MEG) + tt_mbytes);
/*
* page table size: room for A table, B0 table, BF table, STRAM C
* table, one TTRAM C table per 16MB (or fraction) of TTRAM, and 1024
* bytes per megabyte.
*/
page_table_size = (4L * TBL_SIZE_BYTES) +
(((tt_mbytes+15L)/16L) * TBL_SIZE_BYTES) +
(n_megabytes*1024L);
global_mode_table_size = ((SIXTEEN_MEG / QUANTUM) +
(((ulong)tt_mbytes * ONE_MEG) / QUANTUM));
global_mode_table = kmalloc(global_mode_table_size);
assert(global_mode_table);
TRACELOW(("mint_top_st is $%lx; mint_top_tt is $%lx, n_megabytes is %d",
mint_top_st, mint_top_tt, n_megabytes));
TRACELOW(("page_table_size is %ld, global_mode_table_size %ld",
page_table_size,
global_mode_table_size));
g_page.limit = 0x7fff; /* set nonzero fields: disabled limit */
g_page.unused1 = 0x3f; /* ones in this reserved field */
g_page.unused2 = 0;
g_page.s = 0;
g_page.unused3 = 0;
g_page.ci = 0;
g_page.unused4 = 0;
g_page.m = 1; /* set m and u to 1 so CPU won't do writes */
g_page.u = 1;
g_page.wp = 0; /* not write-protected */
g_page.dt = 1; /* descriptor type 1: page descriptor */
g_ci_page = g_page;
g_ci_page.ci = 1;
readable_page = g_page; /* a page which is globally readable */
readable_page.wp = 1; /* but write protected */
s_page = g_page; /* a page which is globally accessible */
s_page.s = 1; /* if you're supervisor */
invalid_page = g_page;
invalid_page.dt = 0;
page_ptr = g_page;
page_ptr.m = 0; /* this must be zero in page pointers */
page_ptr.dt = 3;
tc.enable = 1;
tc.zeros = 0;
tc.sre = 0;
tc.fcl = 0;
tc.is = 0;
tc.tia = 4;
tc.tib = 4;
tc.tic = 4;
tc.tid = 7; /* 0+4+4+4+7+13 == 32 */
tc.ps = 13; /* 8K page size */
/* set the whole global_mode_table to "global" */
memset(global_mode_table,PROT_G,global_mode_table_size);
}
/*
* mark_region: mark a region of memory as having a particular type.
* The arguments are the memory region in question and the new type.
* If the new type is zero then the old type is preserved. The
* type of each page is kept in a global place for this purpose,
* among others.
*
* The types are:
* 0 private
* 1 global
* 2 private, but super-accessible
* 3 private, but world readable
* 4 invalid
*
The idea is this:
for (each process) {
if (you're an owner or you're special) {
set up owner modes
}
else {
set up non-owner modes
}
mark_pages(pagetbl,start,len,modes);
}
*/
/*
invalid---v
private/gr---v |
super-------v | |
global-------v | | |
private-------v | | | |
| | | | |
*/
const ushort other_dt[] = { 0, 1, 1, 1, 0 };
const ushort other_s[] = { 0, 0, 1, 0, 0 };
const ushort other_wp[] = { 0, 0, 0, 1, 0 };
/*
* get_page_cookie: return a cookie representing the protection status
* of some memory.
*
* Returns ((wp << 3) | (s << 2) | (dt) | 0x8000) when it wins.
* Returns 1 if the pages are not all controlled, 0 if they're not all the same.
*/
static short
get_page_cookie(long_desc *base_tbl,ulong start,ulong len)
{
int b_index, c_index, d_index;
long_desc *tbl, *tbl_b, *tbl_c;
int dt, s, wp;
if (start < mint_top_st) {
/* start is in ST RAM; fail if not entirely in ST RAM */
if (start+len > mint_top_st) {
return 1;
}
}
else if (start >= 0x01000000L && start < mint_top_tt) {
/* start is in TT RAM; fail if not entirely in TT RAM */
if (start+len > mint_top_tt) {
return 1;
}
}
/*
* a_index is always zero. Only the first 256MB is mapped.
* b_index is the 16MB number of the page.
* c_index is the 1MB number of that page within the 16MB (0-15)
* d_index is the 8K number within that 1MB (0-127).
*/
b_index = (int)(start >> LOG2_16_MEG);
c_index = (int)(start >> LOG2_ONE_MEG) & 0xf;
d_index = (int)(start >> LOG2_EIGHT_K) & 0x7f;
/* precompute the table addresses */
tbl_b = &base_tbl[0].tbl_address[b_index];
tbl_c = &tbl_b->tbl_address[c_index];
tbl = &tbl_c->tbl_address[d_index];
dt = tbl->page_type.dt;
wp = tbl->page_type.wp;
s = tbl->page_type.s;
for (;;) {
/* quickly loop through the 1MB-block */
for (; len && tbl < &tbl_c->tbl_address[0x80]; tbl++)
{
if ((tbl->page_type.dt != dt) ||
(tbl->page_type.s != s) ||
(tbl->page_type.wp != wp)) {
/* fail because it's not all the same protection */
return 0;
}
len -= EIGHT_K;
}
if (len == 0L)
break;
/* step to the next d-table */
tbl_c++;
/* if crossing a 16MB boundary, get the next c-table */
if (tbl_c == &tbl_b->tbl_address[0x10])
{
tbl_b++;
tbl_c = tbl_b->tbl_address;
}
tbl = tbl_c->tbl_address;
}
/* we passed -- all the pages in question have the same prot. status */
return (wp << 3) | (s << 2) | dt | 0x8000;
}
static void
mark_pages(long_desc *base_tbl,ulong start,ulong len,
ushort dt_val, ushort s_val, ushort wp_val, PROC *proc)
{
int b_index, c_index, d_index;
long_desc *tbl, *tbl_b, *tbl_c;
ulong oldlen;
if (no_mem_prot) return;
oldlen = len;
/*
* a_index is always zero. Only the first 256MB is mapped.
* b_index is the 16MB number of the page.
* c_index is the 1MB number of that page within the 16MB (0-15)
* d_index is the 8K number within that 1MB (0-127).
*/
b_index = (start >> LOG2_16_MEG);
c_index = (start >> LOG2_ONE_MEG) & 0xf;
d_index = (start >> LOG2_EIGHT_K) & 0x7f;
/* precompute the table addresses */
tbl_b = &base_tbl[0].tbl_address[b_index];
tbl_c = &tbl_b->tbl_address[c_index];
tbl = &tbl_c->tbl_address[d_index];
#ifdef MEMPROT_SHORTCUT
/*
* Take a shortcut here: we're done if first page of the region is
* already right.
*/
/* I don't think this shortcut is a good idea, since while we
* are doing Mshrink or Srealloc we may very well have a region
* with mixed page types -- ERS
*/
if (tbl->page_type.dt == dt_val &&
tbl->page_type.s == s_val &&
tbl->page_type.wp == wp_val) {
/*
TRACE(("mark_pages a:0 b:%d c:%d d:%d (same)",
b_index,c_index,d_index));
*/
return;
}
#endif /* MEMPROT_SHORTCUT */
/*
MP_DEBUG(("mark_pages a:0 b:%d c:%d d:%d (diff)",b_index,c_index,d_index));
*/
for (;;)
{
/* quickly loop through the 1MB-block */
for (; len && tbl < &tbl_c->tbl_address[0x80]; tbl++)
{
tbl->page_type.dt = dt_val;
tbl->page_type.s = s_val;
tbl->page_type.wp = wp_val;
len -= EIGHT_K;
}
if (len == 0L)
break;
/* get the next d-table */
tbl_c++;
/* if crossing a 16MB boundary, get the next c-table */
if (tbl_c == &tbl_b->tbl_address[0x10])
{
tbl_b++;
tbl_c = tbl_b->tbl_address;
}
tbl = tbl_c->tbl_address;
}
flush_pmmu();
if (mcpu <= 30) {
/* On the '020 & '030 we have a logical cache, i.e. the DC & IC are on
* the CPU side of the MMU, hence on an MMU context switch we must flush
* them too. On the '040, by comparison, we have a physical cache, i.e.
* the DC & IC are on the memory side of the MMU, so no DC/IC cache flush
* is needed.
*/
cpush((void *)start, oldlen);
}
}
/* get_prot_mode(r): returns the type of protection region r
* has
*/
int
get_prot_mode(r)
MEMREGION *r;
{
ulong start = r->loc;
if (no_mem_prot)
return PROT_G;
return global_mode_table[(start >> 13)];
}
void
mark_region(region,mode)
MEMREGION *region;
short mode;
{
ulong start = region->loc;
ulong len = region->len;
ulong i;
ushort dt_val, s_val, wp_val;
PROC *proc;
MEMREGION **mr;
if (no_mem_prot) return;
MP_DEBUG(("mark_region %lx len %lx mode %d",start,len,mode));
#if 0 /* this should not occur any more */
if (mode == PROT_NOCHANGE) {
mode = global_mode_table[(start >> 13)];
}
#else
assert(mode != PROT_NOCHANGE);
#endif
/* mark the global page table */
memset(&global_mode_table[start >> 13],mode,(len >> 13));
for (proc = proclist; proc; proc = proc->gl_next) {
assert(proc->page_table);
if (mode == PROT_I || mode == PROT_G) {
/* everybody gets the same flags */
goto notowner;
}
if (proc->memflags & F_OS_SPECIAL) {
/* you're special; you get owner flags */
MP_DEBUG(("mark_region: pid %d is an OS special!",proc->pid));
goto owner;
}
if ((mr = proc->mem) != 0) {
for (i = 0; i < proc->num_reg; i++, mr++) {
if (*mr == region) {
MP_DEBUG(("mark_region: pid %d is an owner",proc->pid));
owner:
dt_val = 1;
s_val = 0;
wp_val = 0;
goto gotvals;
}
}
}
notowner:
/* if you get here you're not an owner, or mode is G or I */
MP_DEBUG(("mark_region: pid %d gets non-owner modes",proc->pid));
dt_val = other_dt[mode];
s_val = other_s[mode];
wp_val = other_wp[mode];
gotvals:
mark_pages(proc->page_table,start,len,dt_val,s_val,wp_val,proc);
}
}
/* special version of mark_region, used for attaching (mode == PROT_P)
and detaching (mode == PROT_I) a memory region to/from a process. */
void
mark_proc_region(proc,region,mode)
PROC *proc;
MEMREGION *region;
short mode;
{
ulong start = region->loc;
ulong len = region->len;
ushort dt_val, s_val, wp_val;
short global_mode;
if (no_mem_prot) return;
MP_DEBUG(("mark_region %lx len %lx mode %d for pid %d",
start, len, mode, proc->pid));
global_mode = global_mode_table[(start >> 13)];
assert(proc->page_table);
if (global_mode == PROT_I || global_mode == PROT_G)
mode = global_mode;
else {
if (proc->memflags & F_OS_SPECIAL) {
/* you're special; you get owner flags */
MP_DEBUG(("mark_region: pid %d is an OS special!",proc->pid));
goto owner;
}
if (mode == PROT_P) {
MP_DEBUG(("mark_region: pid %d is an owner",proc->pid));
owner:
dt_val = 1;
s_val = 0;
wp_val = 0;
goto gotvals;
}
}
/* if you get here you're not an owner, or mode is G or I */
MP_DEBUG(("mark_region: pid %d gets non-owner modes",proc->pid));
dt_val = other_dt[mode];
s_val = other_s[mode];
wp_val = other_wp[mode];
gotvals:
mark_pages(proc->page_table,start,len,dt_val,s_val,wp_val,proc);
}
/*
* prot_temp: temporarily alter curproc's access to memory.
* Pass in a -1 to give curproc global access; returns a cookie. Call
* again with that cookie to return the memory to the old mode.
* There should be no context switches or memory protection changes
* in the meantime.
*
* If called with mode == -1, returns...
* -1 if mem prot is off -- no error, no action.
* 0 if the pages are not all the same.
* 1 if the pages are not all controlled by the page tables.
*
* When mode != -1, returns...
* 0 for success (should never fail). There is little checking.
* Calling with mode == 0 or 1 results in zero to spoof success, but in fact
* this is an error. Mode is only really valid if (mode & 0x8000).
*/
int
prot_temp(loc,len,mode)
ulong loc;
ulong len;
int mode;
{
int cookie;
if (no_mem_prot) return -1;
/* round start down to the previous page and len up to the next one. */
len += loc & MASKBITS;
loc &= ~MASKBITS;
len = ROUND(len);
if (mode == 0 || mode == 1) return 0; /* do nothing */
if (mode == -1) {
cookie = get_page_cookie(curproc->page_table,loc,len);
/* if not all controlled, return status */
if (cookie == 0 || cookie == 1) return cookie;
mark_pages(curproc->page_table,loc,len,1,0,0,curproc);
return cookie;
}
else {
mark_pages(curproc->page_table,loc,len,
mode&3,(mode&4)>>2,(mode&8)>>3,curproc);
return 0;
}
}
/*
* init_page_table: fill in the page table for the indicated process. The
* master page map is consulted for the modes of all pages, and the memory
* region data structures are consulted to see if this process is the owner
* of any of those tables.
*
* This also sets crp and tc in both ctxts of the process. If this is the
* first call, then the CPU tc is cleared, the TT0 and TT1 regs are zapped,
* and then this proc's crp and tc are loaded into it.
*/
static short mmu_is_set_up = 0;
void
init_page_table(proc)
PROC *proc;
{
long_desc *tptr;
long_desc *tbl_a; /* top-level table */
long_desc *tbl_b0; /* second level, handles $0 nybble */
long_desc *tbl_bf; /* handles $F nybble */
long_desc *tbl_c; /* temp pointer to start of 16MB */
ulong p, q, r;
ulong i, j, k;
int g;
MEMREGION **mr;
if (no_mem_prot) return;
assert(proc && proc->page_table);
if (proc->pid)
TRACELOW(("init_page_table(proc=%lx, pid %d)",proc,proc->pid));
tptr = proc->page_table;
tbl_a = tptr;
tptr += TBL_SIZE;
tbl_b0 = tptr;
tptr += TBL_SIZE;
tbl_bf = tptr;
tptr += TBL_SIZE;
/*
* table A indexes by the first nybble: $0 and $F refer to their tables,
* $1-$7 are uncontrolled, cacheable; $8-$E are uncontrolled, ci.
*/
tbl_a[0].page_type = page_ptr;
tbl_a[0].tbl_address = tbl_b0;
for (i=1; i<0xf; i++) {
if (i < 8) tbl_a[i].page_type = g_page;
else tbl_a[i].page_type = g_ci_page;
tbl_a[i].tbl_address = (long_desc *)(i << 28);
}
/* $F entry of table A refers to table BF */
tbl_a[0xf].page_type = page_ptr;
tbl_a[0xf].tbl_address = tbl_bf;
/*
* table B0: entry 0 is $00, the 16MB of ST address space.
*/
tbl_b0[0].page_type = page_ptr;
tbl_b0[0].tbl_address = tptr;
tbl_c = tptr;
tptr += TBL_SIZE;
/* for each megabyte that is RAM, allocate a table */
for (i = 0, k = 0, p = 0; p < mint_top_st; i++, p += 0x00100000L) {
tbl_c[i].page_type = page_ptr;
tbl_c[i].tbl_address = tptr;
/* for each page in this megabyte, write a page entry */
for (q = p, j = 0; j < 128; j++, q += 0x2000, k++) {
tptr->page_type = *proto_page_type[global_mode_table[k]];
tptr->tbl_address = (long_desc *)q;
tptr++;
}
}
/* now for each megabyte from mint_top_st to ROM, mark global */
for ( ; p < 0x00E00000L; i++, p += 0x00100000L) {
tbl_c[i].page_type = g_page;
tbl_c[i].tbl_address = (long_desc *)p;
}
/* fill in the E and F tables: 00Ex is ROM, 00Fx is I/O */
tbl_c[i].page_type = g_page;
tbl_c[i].tbl_address = (long_desc *)p;
i++, p += 0x00100000L;
tbl_c[i].page_type = g_ci_page;
tbl_c[i].tbl_address = (long_desc *)p;
/* Done with tbl_c for 0th 16MB; go on to TT RAM */
/*
structure:
for (i = each 16MB that has any TT RAM in it)
allocate a table tbl_c, point tbl_b0[i] at it
for (j = each 1MB that is RAM)
allocate a table, point tbl_c[j] at it
for (k = each page in the megabyte)
fill in tbl_c[j][k] with page entry from global_mode_table
for (j = the rest of the 16MB)
set tbl_c[j] to "global, cacheable"
for (i = the rest of the 16MBs from here to $7F)
set tbl_b0[i] to "global, cacheable"
for (i = the rest of the 16MBs from $80 up to but not incl. $FF)
set tbl_b0[i] to "global, not cacheable"
*/
/* i counts 16MBs */
for (i = 1, p = 0x01000000L, g = 2048;
p < mint_top_tt;
p += SIXTEEN_MEG, i++) {
tbl_b0[i].page_type = page_ptr;
tbl_b0[i].tbl_address = tptr;
tbl_c = tptr;
tptr += TBL_SIZE;
/* j counts MBs */
for (j = 0, q = p; j < 16 && q < mint_top_tt; q += ONE_MEG, j++) {
tbl_c[j].page_type = page_ptr;
tbl_c[j].tbl_address = tptr;
/* k counts pages (8K) */
for (r = q, k = 0; k < 128; k++, r += 0x2000, g++) {
tptr->page_type = *proto_page_type[global_mode_table[g]];
tptr->tbl_address = (long_desc *)r;
tptr++;
}
}
for ( ; j < 16; j++, q += ONE_MEG) {
/* fill in the rest of this 16MB */
tbl_c[j].page_type = g_page;
tbl_c[j].tbl_address = (long_desc *)q;
}
}
/* fill in the rest of $00-$0F as cacheable */
for ( ; i < 16; i++, p += SIXTEEN_MEG) {
tbl_b0[i].page_type = g_page;
tbl_b0[i].tbl_address = (long_desc *)p;
}
/* done with TT RAM in table b0; do table bf */
/*
* Table BF: translates addresses starting with $F. First 15 are
* uncontrolled, cacheable; last one translates $FF, which
* which shadows $00 (the 16MB ST address space). The rest
* are uncontrolled, not cacheable.
*
* The table address of the copy has a 1 in the low (unused) bit, which
* is a signal to the table dumper not to dump this, as it's a copy
* of tbl_b0[0].
*/
for (i=0; i<0xf; i++) {
tbl_bf[i].page_type = g_ci_page;
tbl_bf[i].tbl_address = (long_desc *)((i << 24) | 0xf0000000L);
}
tbl_bf[0xf] = tbl_b0[0];
*(ulong *)(&(tbl_bf[0xf].tbl_address)) |= 1;
proc->ctxt[0].crp.limit = 0x7fff; /* disable limit function */
proc->ctxt[0].crp.dt = 3; /* points to valid 8-byte entries */
proc->ctxt[0].crp.tbl_address = tbl_a;
proc->ctxt[1].crp = proc->ctxt[0].crp;
proc->ctxt[0].tc = tc;
proc->ctxt[1].tc = tc;
/*
* OK, memory tables are now there as if you're a non-owner of every
* page. Now for each region you ARE an owner of, mark with owner
* modes.
*/
mr = proc->mem;
for (i=0; i < proc->num_reg; i++, mr++) {
if (*mr) {
mark_pages(proc->page_table,(*mr)->loc,(*mr)->len,1,0,0,proc);
}
}
if (!mmu_is_set_up) {
set_mmu(proc->ctxt[0].crp,proc->ctxt[0].tc);
mmu_is_set_up = 1;
}
}
/*
* This routine is called when procfs detects that a process wants to be an
* OS SPECIAL. The AES, SCRENMGR, and DESKTOP do this, and so does FSMGDOS
* and possibly some other stuff. It has to re-mark every page in that
* process' page table based on its new special status. The "special
* status" is "you get global access to all of memory" and "everybody
* gets Super access to yours." It is the caller's responsibility
* to set proc's memflags, usually to (F_OS_SPECIAL | F_PROT_S).
*/
void
mem_prot_special(proc)
PROC *proc;
{
MEMREGION **mr;
int i;
if (no_mem_prot) return;
TRACE(("mem_prot_special(pid %d)",proc->pid));
/*
* This marks ALL memory, allocated or not, as accessible. When memory
* is freed even F_OS_SPECIAL processes lose access to it. So one or
* the other of these is a bug, depending on how you want it to work.
*/
mark_pages(proc->page_table,0,mint_top_st,1,0,0,proc);
if (mint_top_tt) {
mark_pages(proc->page_table,
0x01000000L,
mint_top_tt - 0x01000000L,
1,0,0,
proc);
}
/*
* In addition, mark all the pages the process already owns as "super"
* in all other processes. Thus the "special" process can access all
* of memory, and any process can access the "special" process' memory
* when in super mode.
*/
mr = proc->mem;
for (i=0; i < proc->num_reg; i++, mr++) {
if (*mr) {
mark_region(*mr,PROT_S);
}
}
}
/*----------------------------------------------------------------------------
* DEBUGGING SECTION
*--------------------------------------------------------------------------*/
static void
_dump_tree(tbl,level)
long_desc tbl;
int level;
{
int i, j;
long_desc *p;
static const char spaces[9] = " ";
/* print the level and display the table descriptor */
FORCE("\r%s s:%x wp:%x dt:%x a:%08lx",
&spaces[8-(level*2)],
tbl.page_type.s,
tbl.page_type.wp,
tbl.page_type.dt,
tbl.tbl_address);
if (tbl.page_type.dt == 3) {
if (level == 0) {
j = (1 << tc.tia);
}
else if (level == 1) {
j = (1 << tc.tib);
}
else if (level == 2) {
j = (1 << tc.tic);
}
else {
j = (1 << tc.tid);
}
/* don't show table if it's the duplicate */
if ((ulong)tbl.tbl_address & 1) return;
++level;
p = tbl.tbl_address;
for (i=0; i<j; i++, p++) {
_dump_tree(*p,level);
}
}
}
static const char modesym[] = { 'p', 'g', 's', 'r', 'i' };
void
QUICKDUMP()
{
char outstr[33];
ulong i, j, end;
if (no_mem_prot) return;
FORCE("STRAM global table:");
outstr[32] = '\0';
end = mint_top_st / QUANTUM;
for (i = 0; i < end; i += 32) {
for (j=0; j<32; j++) {
outstr[j] = modesym[global_mode_table[j+i]];
}
FORCE("%08lx: %s",i*8192L,outstr);
}
if (mint_top_tt) {
FORCE("TTRAM global table:");
end = mint_top_tt / QUANTUM;
for (i = 2048; i < end; i += 32) {
for (j=0; j<32; j++) {
outstr[j] = modesym[global_mode_table[j+i]];
}
FORCE("%08lx: %s",i*8192L,outstr);
}
}
}
const char *berr_msg[] = {
/* "........." */
"private ",
"global ", /* turned into "hardware" for violation reports */
"super ",
"readable ",
"free ",
"hardware " /* used when the memory is not controlled by us */
};
void
report_buserr()
{
const char *vmsg;
short mode;
ulong aa, pc;
char alertbuf[5*32+16]; /* enough for an alert */
char *aptr;
if (no_mem_prot) return;
aa = curproc->exception_addr;
pc = curproc->exception_pc;
if ((mint_top_tt && aa < mint_top_tt) || (aa < mint_top_st)) {
mode = global_mode_table[(curproc->exception_addr >> 13)];
if (mode == PROT_G) {
/* page is global: obviously a hardware bus error */
mode = 5;
}
}
else {
/* (addr is > mint_top_tt) set mode = 5 so we don't look for owners */
mode = 5;
}
vmsg = berr_msg[mode];
/* construct an AES alert box for this error:
| PROCESS "buserrxx" KILLED: |
| MEMORY VIOLATION. (PID 000) |
| |
| Type: ......... PC: pc...... |
| Addr: ........ BP: ........ |
*/
/* we play games to get around 128-char max for ksprintf */
ksprintf(alertbuf,"[1][ PROCESS \"%s\" KILLED: |",curproc->name);
aptr = alertbuf + strlen(alertbuf);
ksprintf(aptr," MEMORY VIOLATION. (PID %03d) | |",curproc->pid);
aptr = alertbuf + strlen(alertbuf);
ksprintf(aptr," Type: %s PC: %08lx |",vmsg,pc);
aptr = alertbuf + strlen(alertbuf);
ksprintf(aptr," Addr: %08lx BP: %08lx ][ OK ]",aa,curproc->base);
if (!_ALERT(alertbuf)) {
/* this will call _alert again, but it will just fail again */
ALERT("MEMORY VIOLATION: type=%s AA=%lx PC=%lx BP=%lx",
vmsg,aa,pc,curproc->base);
}
if (curproc->pid == 0 || curproc->memflags & F_OS_SPECIAL) {
/* the system is so thoroughly hosed that anything we try will
* likely cause another bus error; so let's just hang up
*/
FATAL("Operating system killed");
}
}
/*
* big_mem_dump is a biggie: for each page in the system, it
* displays the PID of the (first) owner and the protection mode.
* The output has three chars per page, and eight chars per line.
* The first page of a region is marked with the mode, and the
* rest with a space.
*
* Logic:
for (mp = *core; mp; mp++) {
for (each page of this region) {
if (start of line) {
output line starter;
}
if (start of region) {
output mode of this page;
determine owner;
output owner;
}
else {
output space;
output owner;
}
}
}
*/
void
BIG_MEM_DUMP(bigone,proc)
int bigone;
PROC *proc;
{
#ifdef DEBUG_INFO
char linebuf[128];
char *lp = linebuf;
MEMREGION *mp, **mr, **map;
PROC *p;
ulong loc;
short owner;
short i;
short first;
if (no_mem_prot) return;
for (map = core; map != 0; ((map == core) ? (map = alt) : (map = 0))) {
FORCE("Annotated memory dump for %s",(map == core ? "core" : "alt"));
first = 1;
*linebuf = '\0';
for (mp = *map; mp; mp = mp->next) {
for (loc = mp->loc; loc < (mp->loc + mp->len); loc += EIGHT_K) {
if (first || ((loc & 0x1ffff) == 0)) {
if (*linebuf) FORCE(linebuf);
ksprintf(linebuf,"\r%08lx: ",loc);
lp = &linebuf[11];
first = 0;
}
if (loc == mp->loc) {
*lp++ = modesym[global_mode_table[loc / EIGHT_K]];
for (p = proclist; p; p = p->gl_next) {
if (p->mem) {
mr = p->mem;
for (i=0; i < p->num_reg; i++, mr++) {
if (*mr == mp) {
owner = p->pid;
goto gotowner;
}
}
}
}
owner = 000;
gotowner:
ksprintf(lp,"%03d",owner);
lp += 3;
}
else {
*lp++ = ' ';
*lp++ = '-';
*lp++ = '-';
*lp++ = '-';
*lp = '\0'; /* string is always null-terminated */
}
}
}
FORCE(linebuf);
}
if (bigone) {
long_desc tbl;
/* fill in tbl with the only parts used at the top level */
tbl.page_type.dt = proc->ctxt[CURRENT].crp.dt;
tbl.tbl_address = proc->ctxt[CURRENT].crp.tbl_address;
_dump_tree(tbl,0);
}
#endif /* DEBUG_INFO */
}
/*
* Can the process "p" access the "nbytes" long
* block of memory starting at "start"?
* If it would be a legal access, the current
* process is given temporary access via
* prot_temp.
* Returns a cookie like the one prot_temp
* returns; if the process shouldn't have
* access to the memory, returns 1.
*
* BUG: should actually read p's page table to
* determine access
*/
int
mem_access_for(p, start, nbytes)
PROC *p;
ulong start;
long nbytes;
{
MEMREGION **mr;
int i;
if (no_mem_prot) return -1;
if (start >= (ulong)p && start+nbytes <= (ulong)(p+1))
return -1;
if (p == rootproc)
goto win_and_mark;
mr = p->mem;
if (mr) {
for (i = 0; i < p->num_reg; i++, mr++) {
if (*mr) {
if (((*mr)->loc <= start) &&
((*mr)->loc + (*mr)->len >= start + nbytes))
goto win_and_mark;
}
}
}
return 0; /* we don't own this memory */
win_and_mark:
return prot_temp(start, nbytes, -1);
}